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Abstract
The modular data from twisted [k] ∈ H3(G, T) quantum double of finite groups
G are studied, with G = Zn cyclic groups. It is proved that the [k] and [−k]
modular data are the same up to relabelling of the primary fields and complex
conjugation of the underlying representation of the modular group SL(2, Z).
Then we produce some lower bounds for the number of modular invariants of
these models, and complete the study for the cases G = Z2, Z3 and Z4 at all
twists, proving in particular that all their modular invariants are produced by
braided subfactors.

PACS numbers: 02.30.Sa, 11.25.Hf, 02.40.Gh, 02.20.Uw
Mathematics Subject Classification: 46L60, 81T40, 46L37, 81T05

1. Motivation and introduction

We use the braided subfactor framework developed in [2–5, 13] to further the study of the
modular data arising from the quantum double of finite groups G, possibly with twists or levels
[k] ∈ H3(G, T). These models first appeared in [7–9] as holomorfic orbifolds models and
more recently in [6, 13, 28]. Perhaps the most physical incarnation of this modular data is in
the (2+1)-dimensional quantum field theories [1], where a continuous gauge group has been
spontaneously broken to a finite group.

We borrow techniques from the noncommutative setting of subfactor theory and begin a
more exhaustive study of the modular invariants associated with these twisted models, starting
with cyclic groups G = Zn.

More generally, a prominent problem in rational conformal field theory (RCFT) is the
classification of modular invariant partition functions Z(τ) = ∑

Zλ,µχλ(τ )χ∗
µ(τ), where

χλ(τ) = TrHλ
(e2π iτ(L0−c/24)) is the trace in the irreducible representation λ (primary field) of

the chiral algebra, with conformal Hamiltonian L0, Im(τ ) > 0 and c is the central charge.
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This problem has been solved for a few models, although its mathematical formulation is very
simple in terms of the following modular data. For a given finite-dimensional representation of
the modular group SL(2, Z), let S = [Sλ,µ] and T = [Tλ,µ] denote the matrices representing

the images of the generators
(

0 −1
1 0

)
and

(
1 1
0 1

)
, respectively. We further suppose that T is

diagonal, S is symmetric, S2 a permutation matrix and Sλ,0 � S0,0 > 0 where ‘0’ is a
distinguished primary field (the vacuum). Then a coupling matrix Z = [Zµλ] that commutes
with S and T subject to the constraints

Zλ,µ = 0, 1, 2, 3, . . . and Z00 = 1

is called a modular invariant. These constraints reflect the physical background of the problem.
The condition Z00 = 1 reflects the uniqueness of the vacuum. In the partition Z(τ) formulation,
the modular invariance can be rephrased as follows:

Z

(
aτ + b

cτ + d

)
= Z(τ) with

(
a b

c d

)
∈ SL(2, Z).

Note that the identity Z = id and the charge conjugation C := S2 are always modular
invariants, possibly the same.

In our framework, each primary field has a concrete meaning of an endomorphism
λ ∈ End(N) in a fixed type III von Neumann factor N and thus the set of primary fields
will be represented by a (finite) set of endomorphisms NXN on N which we call a system of
endomorphisms and are moreover assumed to be nondegenerately braided [4, 5]. The vacuum
‘0’ is represented by the identity endomorphism of N. Hence, we can yield such modular
matrices S and T [4, 5], a representation of the modular group SL(2, Z) satisfying the above
constraints. Therefore, we can produce a list of modular invariants, which a priori we do not
know whether they are physically meaningful. Given a braided subfactor N ⊂ M (i.e. the
inclusion morphism ι : N → M is such that the endomorphism θ := ῑι of N decomposes as
a sum of endomorphisms from NXN ) we can apply the Longo–Rehren induction [23, 32] to
extend each λ ∈ NXN to two morphisms α±

λ ∈ End(M) since we always have two choices for
the braiding. The morphism ῑ : M → N is the conjugate morphism of ι. Now if we consider
the intertwiner space

Hom
(
α+

λ, α−
µ

) = {
x ∈ M : xα+

λ(y) = α−
µ (y)x, for all y ∈ M

}
, (1)

and its dimension Zλµ = dim Hom
(
α+

λ, α−
µ

)
, then the matrix ZN⊂M = [Zλµ] is indeed a

modular invariant [4]. (In general for morphisms σ, ρ from A to B we set Hom(σ, ρ) = {b ∈
B : bσ(a) = ρ(a)b, for all a ∈ A} and 〈σ, ρ〉 = dim Hom(σ, ρ).) Given the list of modular
invariants, one of the main interesting tasks is to decide which ones can be realized through
braided subfactors (the so-called sufferable modular invariants). There is a considerable
evidence that the sufferable modular invariants are precisely those of physical interest, see,
e.g., [13, p 312]. See [13, 14] for modular invariants that cannot appear from subfactors and
thus physically unhealthy. Of course, we may have different subfactors producing the same
modular invariant.

Let ι: N ⊂ M be a subfactor. Since ῑι, ιῑ contain the identity idM, idN , respectively,
there are intertwining isometries, v and w1, in Hom(idN, ῑι), Hom(idM, ιῑ), respectively
[20, 22]. Then w = ῑ(w1) is an isometry in Hom(θ, θ2) where θ = ῑι is the dual canonical
endomorphism which satisfy [22]

w∗θ(w) = ww∗, w2 = θ(w)w, v∗w = w∗θ(v) = 1/d (2)

with d = dim(ι), thus d2 = [M: N ] is the Jones index [21]. The system 
 = (θ, v,w) is called
a Q-system by Longo [22], and conditions in (2) precisely characterize which endomorphisms
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can arise as dual canonical endomorphisms for N ⊂ M . Conversely, given a Q-system we can
always produce an inclusion N ⊂ M , see [22]. However, a dual endomorphism θ does not
determine the subfactor uniquely up to conjugacy. This is an H2-cohomological obstruction
that has been studied in [18] and [13, proposition 3.2 and remark 3.3].

In modular tensor category setting, the notion of Q-system is named Frobenius algebra,
see, e.g., [14, 16]. Namely, the above relations (2) mean that a Q-system is a Frobenius algebra
A = (θ,m, e,�, ε), see [25], where θ is an object of C (an integral sum of simple objects
in a modular tensor category C), e ∈ Hom(1, θ),m ∈ Hom(θ ⊗ θ, θ), ε ∈ Hom(θ, 1),� ∈
Hom(θ, θ ⊗ θ) such that (θ,m, e) is an algebra, (θ,�, ε) is a co-algebra with the algebraic

and co-algebraic structures related by

(m ⊗ idA) ◦ (idA ⊗ �) = � ◦ m = (idA ⊗ m) ◦ (� ⊗ idA). (3)

The intertwiners w and w∗ are translated into � and m, respectively, and the isometry v and
v∗ are replaced by e and ε, respectively. See [14] for full details.

The set of modular invariants that can be realized by subfactors enjoys a very rich structure:
for example, if Za and Zb are produced by dual endomorphisms θa and θb, respectively, then
the matrix product ZaZb is produced by the composition θaθb with inclusion N ⊂ Mab. Of
course, ZaZb is a modular invariant except that its (0, 0)-entry may no longer be normalized
to be 1, see [13]. In fact, [ZaZb]00 = dim(Mab ∩ M ′

ab), where M ′
ab denotes the comutant of

Mab, see [13]. Moreover, we obtain a (possibly noncommutative) fusion structure [13]:

ZaZb =
∑

c

mc
abZc, with mc

ab ∈ N0, Zc sufferable and normalized. (4)

This fusion structure is quite useful specially when we deal with a large number of modular
invariants, as we see in this paper.

Of course, in general when we have a subfactor and therefore a dual endomorphism θ it is
difficult to use (1) to pin down the associated modular invariant ZN⊂M . Nevertheless, we may
start by computing its trace Tr(ZN⊂M). This can be done by counting the irreducible N − M

morphisms from the decompositions ιλ with λ ∈ NXN , see [5]. This is the NXM system and
to help find the common part of the irreducible decompositions of ιλ and ιµ we appeal to
Frobenius reciprocity [4, 20] and get

〈ιλ, ιµ〉 = 〈ῑιλ, µ〉 = 〈θλ, µ〉 = 〈θ, λ̄µ〉, (5)

and [λ̄µ] = ∑
Nν

λ̄µ
[ν] where Nν

λ̄µ
∈ N0 are the famous Verlinde fusion numbers which are

derived from the S matrix as follows [31]:
∑

ξ∈NXN

Sλ,ξ Sµ,ξS
∗
ν,ξ

Sξ,0
= Nν

λ,µ. (6)

In the subfactor framework, we further have Nν
λ,µ = 〈λµ, ν〉. If Z is the modular invariant

yielded by N ⊂ M then the following ‘curious’ identity holds⊕
a∈NXM

[āa] =
⊕

λ,µ∈NXN

Zλ,µ[λµ̄] (7)

which will be useful in the following.
We can find modular data in a wide variety of contexts, including the Weiss–Zumino–

Witten (WZW) models [33] (notably the Ising model see, e.g., [14, section 4.2]), the Drinfeld
quantum double (or the operator algebras Ocneanu’s quantum double analogue [26, 19]),
notably the quantum double of finite groups where the primary fields λ are labelled by pair
(a, π) with a running in a set of conjugacy class representatives of the group G and π are the
irreducible representations of the centralizer CG(a) = {g ∈ G : ga = ag}. For example, for
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the cyclic group Zn we have n conjugacy classes and the centralizer of every class coincides
with Zn, thus altogether we have Zn × Zn primary fields.

One way to generalize the (quantum double) finite group data is by introducing twistings.
This twisting has a cohomological origin, as in the theory of WZW G models for compact Lie
groups G, where infinitely many possible twists are labelled by the levels k, which are integers
since H3(G, T) = Z. The level 0 WZW model is trivial.

In contrast with the WZW models, the twisting (the elements of the finite Abelian group
H3(G, T)) of finite groups offers a finite number of levels. These twistings first appeared in
its most generality in [8, 9], but only in [6] that explicit expressions for the modular matrices
S and T appeared. For each cohomology class [k] ∈ H3(G, T), they produce a modular data
such that the (untwist) k = 0 model coincides with previously known model from the group
G, i.e. the quantum double of G. The twisting was incorporated in the quantum-group picture
in [9] and in the subfactor setting in [19], see also [11]. For all these reasons [6] the modular
data that arise from the twist [k] of a finite group is called the level k quantum G double
modular data. The twisted primary fields are labelled by pairs (a, π̃) with a running in a set
of conjugacy class representatives and π̃ are certain projective irreducible representations of
the centralizer CG(a), see [6, (5.17)].

We work in particular models whose primary fields are simple currents, i.e. the quantum
dimension dim(λ) = S0λ

S00
of every primary field λ is 1, so due to the Verlinde formula the

system NXN has a finite Abelian group G = {λg} structure. For simple current modular data,
the dual endomorphism of a braided subfactor N ⊂ M is of the form θH = ⊕

h∈H λh for some
subgroup H of G. The same θH may arise different (inner conjugate) subfactors and this is
detected by the cohomology elements of H 2(H, T), see [18]. Then we can compute the NXM

system and thus its trace [15]:

Tr(ZN⊂M) = |G|
|H | . (8)

For a given subgroup H the problem of when a θH gives rise to a Q-system, thus to
a braided subfactor in the level k quantum G double data, has been addressed in [13, 17],
however let us point out that its origin is Rehren’s net setting [30]. In the level k quantum G
double modular data, with G Abelian group, and T its modular matrix, θH can be endowed
with a structure of a Q-system if and only if T

N(a,l)

(a,l),(a,l) = 1 for all (a, l) ∈ H where N(a,l)

denotes the order of (a, l). Note that the simple currents are G × G as a set, see e.g. [6], and
thus H < G × G.

The plan of the rest of the paper is as follows. In section 2, we rewrite the quantum
Zn double modular data from any twist or level [k], thus proving in proposition 2.1 that the
modular data for the levels [k] and [−k] are the same up to a concrete permutation of the simple
currents and complex conjugation of the modular S, T -matrices. Then in proposition 2.3
we produce some lower bounds for the total number of modular invariants of the level k
quantum Zn double modular data (implying that in the untwist k = 0 case, this number
increases with the cardinal of the group, in contrast with level k �= 0 where the number of
modular invariants are few as the n prime cases show). Finally, in section 3 we complete the
study for the quantum Z2, Z3 and Z4 models at all levels.

2. Twisted modular invariants from cyclic groups

Here, we are interested in analysing the twisted modular data that arise from the quantum
double of cyclic groups G = Zn. First note that H3(G, T) = Zn, thus we have n twists or
levels. Take [k] ∈ H3(G, T). In the following we also denote [k] simply by k and the inverse
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of [k], as an element of H3(G, T), will be denoted by −k or n − k. The primary fields of
the quantum G double at level k equals Zn × Zn as a set, whose elements we will denote by
λa,l or simply by (a, l) for all a, l ∈ G. The modular data S(k), T (k) are derived explicitly in
[6, equations (6.2) and (6.3)]:

S
(k)

(a,l),(b,r) = 1

n
exp

(
−2π i

2kab + n(ar + bl)

n2

)
,

T
(k)

(a,l),(a,l) = exp

(
2π i

ka2 + nal

n2

)
.

(9)

Whenever no confusion arises, we will just write S and T instead of S(k) and T (k). The vacuum
is (0, 0) and for any level k it is obvious that every primary field (a, l) has quantum dimension
S(a,l),(0,0)

S(0,0),(0,0)
= 1, thus they are all simple currents and hence they form an Abelian group. The

multiplication law of this Abelian group is, by the Verlinde formula [31],

(a, l) · (b, r) = (a + b, l + r + 2k(a + b − 〈a + b〉)/n) mod nZ
2 (10)

where 〈a + b〉 denotes a + b mod n, see [6]. Clearly that for any a �= 0 and l,

(0, l)−1 = (0,−l), (a, l)−1 = (n − a,−l − 2k). (11)

If we set f = GCD(2k, n) with s, s ′ so that f s = n and f s ′ = 2k and GCD stands for the
greatest common divisor, then the Abelian group structure of the primary fields is

χ(G,k) := Zf × Zn2/f (12)

with (s, s ′) a generator of Zf and (1, 0) a generator of Zn2/f . Note that in both the untwisted
k = 0 case and k = n/2 if n is even (i.e. when [k] = [−k]), we obtain f = n and therefore
χ(G,k) � Zn × Zn as groups.

Of course [0] = [−0], hence in the following we concentrate at the other levels.

Proposition 2.1. Up to permutations of simple currents and complex conjugation, the modular
data for [k] and its inverse twist [−k] coincide, namely,

S
(n−k)

(a,l),(b,r) = S
(k)

(a,−a−l),(b,−b−r) and T
(n−k)

(a,l),(b,r) = T
(k)

(a,−a−l),(b,−b−r).

Proof. By (9), we have

S
(n−k)

(a,l),(b,r) = 1

n
exp

(
−2π i

−2(n − k)ab − n(ar + bl)

n2

)

= 1

n
exp

(
−2π i

2kab + n(a(−b − r) + b(−a − l))

n2

)

= S
(k)

(a,−a−l),(b,−b−r).

Using again (9) we similarly obtain the identity for the T matrices:

T
(n−k)

(a,l),(a,l) = exp

(
2π i

−na2 + ka2 − nal

n2

)

= exp

(
2π i

ka2 + na(−a − l)

n2

)
= T

(k)

(a,−a−l),(a,−a−l).
�

For k �= 0, the map σ : χ(G,−k) → χ(G,k) sending (a, l) to (a,−a − l) is easily seen to be
an isomorphism of groups such that σ 2 = id.
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Table 1. Number of modular invariants of quantum Z2, Z3, Z4 at all levels.

Level 0 Level 1 Level 2 Level 3

Z2 6 2 – –
Z3 9 3 3 –
Z4 22 4 10 4

Corollary 2.2. The fusion rules and moreover the number of modular invariants for modular
for the levels k and n−k coincide. Moreover, if Z = ∑

Z(a,l)(b,r)χalχ
∗
br is a modular invariant

for the modular data at level k, then Zσ := ∑
Z(a,−a−l)(b,−b−r)χa,−a−lχ

∗
b,−b−r is a modular

invariant for the level n − k.

Proof. The result follows from proposition 2.1 and the fact that such a matrix Z commutes
with S and T iff Z commutes with the complex conjugation of S and T. �

We similarly yield a modular invariant Zσ at level k from a given modular invariant Z at
level n − k, and moreover (Zσ )σ = Z since σ 2 = id.

2.1. Some modular invariants

It has been proved in [6] that there are at least five modular invariants in the quantum double
of any finite group at level zero. Next result is an improvement of that result with some partial
results for any level.

Proposition 2.3. Let us consider the quantum Zn double level k modular data. Then,

(i) the number of level 0 (sufferable) modular invariants is greater than n + 3.
If n � 6 is even then the number of modular invariants is greater than n + 10;

(ii) if GCD(2k, n) = 1 for a level k �= 0, the number of modular invariants is precisely the
number of divisors of n2. Moreover if n is an odd prime, then Z1 = id, Z2 = C and
Z3 = ∑

χ0iχ
∗
0i are all the (sufferable) quantum Zn double modular invariants at level k.

Proof. For level 0, the system NXN is isomorphic to the Abelian group Zn × Zn. Since
T n

10,10 = T n
01,01 = 1 we conclude that θZn×0 and θ0×Zn

are dual endomorphisms and therefore
θZn×Zn

= θZn×0 · θ0×Zn
is also a dual endomorphism by [13]. Hence θH is a dual endomorphism,

for any subgroup H < Zn × Zn.
Next let us consider the following list of subgroups of Zn × Zn:

Hs = 〈(1, s)〉, s = 0, 1, . . . , n − 1.

Clearly, H1 = {(h, h): h ∈ Zn} and H0 = Zn × 0. Together with 0 × Zn we get in this way
n+1 different copies of Zn inside Zn ×Zn. Of course, we have the extra two trivial subgroups.
By [15, lemma 3.2] or [29, section 3], two different subgroups in this list of n + 3 subgroups
are attached to different modular invariants (even if they are isomorphic as abstract groups).
If n is even then we have a subgroup Z2 = {0, n/2}. For n �= 2, 4 we get new subgroups

Z2 × 0, 0 × Z2, Z2 × Z2, Z2 × Zn, Zn × Z2, {(0, 0), (n/2, n/2)}, HC := {(2a, 2r)}.
Note that |HC | = n2/4. So we get seven new subgroups in the even case and therefore n + 10
modular invariants.

We proceed now with the proof of (ii). If GCD(2k, n) = 1, then the system NXN � Zn2

as groups, see (12), with (1, 0) its generator. Since T n2

10,10 = 1 we conclude that θZ
n2 is a dual

endomorphism and so are all their subgroups. Every divisor of n2 gives rise to a subgroup
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Table 2. Quantum Z2 modular invariants: levels 0 and 1.

Modular invariant Trace θH

Level 0
Z1 = ∑

χij χ
∗
ij 4 0 × 0

Z2 = ∑
χij χ

∗
ji 2 �(Z2)

Z3 = ∑
χ0iχ

∗
0j 2 0 × Z2

Z4 = ∑
χi0χ

∗
j0 2 Z2 × 0

Z5 = ∑
χ0j χ

∗
i0 1 Z2 × Z2

Z6 = ∑
χi0χ

∗
0j 1 Z2 × Z2

Level 1
Z1 = ∑

χij χ
∗
ij 4 0 × 0

Z2 = ∑
χ0iχ

∗
0j 2 0 × Z2

Table 3. Quantum Z3 modular invariants.

Modular invariants Trace θH

Level 0
Z1 = ∑

χij χ
∗
ij 9 0 × 0

Z2 = ∑
χij χ

∗
ji 3 {(0, 0), (1, 2), (2, 1)}

Z3 = ∑
χij χ

∗
−j−i 3 �(Z3)

Z4 = ∑
χi0χ

∗
j0 3 Z3 × 0

Z5 = ∑
χ0iχ

∗
0j 3 0 × Z3

Z6 = C = ∑
χij χ

∗
−i−j 1 Z3 × Z3

Z7 = ∑
χi0χ

∗
0j 1 Z3 × Z3

Z8 = ∑
χ0j χ

∗
i0 1 Z3 × Z3

Levels 1 and 2
Z1 = ∑

χij χ
∗
ij 9 0 × 0

Z2 = ∑
χ0iχ

∗
0i 3 0 × Z3

Z3 = C = ∑
χ0j χ

∗
0,−j +

∑
i �=0 χij χ

∗
3−i,−j−2 1 Z9

of Zn2 , so there the number of modular invariants is at least the number of divisors of n2,
[15, lemma 3.2]. On the other hand, every such subgroup K of Zn2 is itself cyclic and therefore
the second cohomology H2(K, T) is trivial. Hence, every subgroup has only one Q-system
structure, see [13, 18]. Therefore, every subgroup of Zn2 is attached to exactly one modular
invariant.

If n is prime then we get exactly the three obvious divisors and so three sufferable modular
invariants. �

In particular, in the untwist k = 0 case, the number of modular invariants increases as
the cardinal of the group increases. For n prime, the quantum Zn double level 0 (sufferable)
modular invariants are fully treated in [15].

3. Examples: quantum Z2, Z3, Z4 at all levels

Here, we work out all the twisted models arising from the quantum G double where
G = Z2, Z3 and Z4 at all levels [k] ∈ H3(G, T). The quantum Z2 level 0 was done in
[3, 13], the quantum Z3 all levels were done in [13, section 5], while the quantum Z4 level
0 was done in [29, section 3]. Thus in this section we study the remaining cases: first
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Table 4. Quantum Z4 level 0 modular invariants.

Modular invariants Trace Canonical θH

Z1 = ∑
χij χ

∗
ij 16 0 × 0

Z2 = C = ∑
χij χ

∗
−i−j 4 Z2 × Z2

Z3 = ∑
χij χ

∗
ji 4 {(0, 0), (1, 3), (3, 1), (2, 2)}

Z4 = ∑
χij χ

∗
−j−i 4 �(Z4)

Z5 = ∑
χ0iχ

∗
0j 4 0 × Z4

Z6 = ∑
χi0χ

∗
j0 4 Z4 × 0

Z7 = |χ00 + χ02 + χ20 + χ22|2 4 Z2 × Z2

Z8 = |χ00 + χ02|2 + |χ21 + χ23|2 + (χ01 + χ03)(χ20 + χ22)
∗ 4 {(0, 0), (0, 2), (2, 1), (2, 3)}

+ (χ20 + χ22)(χ01 + χ03)
∗

Z9 = |χ00 + χ02|2 + |χ01 + χ03|2 8 0 × Z2

+ |χ20 + χ22|2 + |χ21 + χ23|2
Z11 = |χ00 + χ22|2 + |χ02 + χ20|2 8 �(Z2)

+ |χ11 + χ33|2 + |χ13 + χ31|2
Z22 = |χ00 + χ20|2 + |χ12 + χ32|2 + (χ02 + χ22)(χ10 + χ30)

∗ 4 {(0, 0), (2, 0), (1, 2), (3, 2)}
+ (χ10 + χ30)(χ02 + χ22)

∗

Z33 = |χ00 + χ20|2 + |χ02 + χ22|2 8 Z2 × 0
+ |χ10 + χ30|2 + |χ12 + χ33|2

Z56 = ∑
χ0iχ

∗
j0 1 Z4 × Z4

Z65 = ∑
χi0χ

∗
0j 1 Z4 × Z4

Z57 = ∑
χ0i (χ00 + χ02 + χ20 + χ22)

∗ 2 Z2 × Z4

Z75 = ∑
(χ00 + χ02 + χ20 + χ22)χ

∗
0i 2 Z2 × Z4

Z67 = ∑
χi0(χ00 + χ02 + χ20 + χ22)

∗ 2 Z4 × Z2

Z76 = ∑
(χ00 + χ02 + χ20 + χ22)χ

∗
i0 2 Z4 × Z2

Z(2)7 = (χ00 + χ20)(χ00 + χ02)
∗ + (χ02 + χ22)(χ01 + χ03)

∗ 1 Z4 × Z4

+ (χ10 + χ30)(χ20 + χ22)
∗ + (χ12 + χ32)(χ21 + χ23)

∗

Z(2)7 = (χ00 + χ02)(χ00 + χ20)
∗ + (χ01 + χ03)(χ02 + χ22)

∗ 1 Z4 × Z4

+ (χ20 + χ22)(χ10 + χ30)
∗ + (χ21 + χ23)(χ12 + χ32)

∗

Z(2)8 = (χ00 + χ20)(χ00 + χ02)
∗ + (χ10 + χ30)(χ01 + χ03)

∗ 2 {(0, 0), (0, 2), (1, 1), (1, 3),

+ (χ02 + χ22)(χ20 + χ22)
∗ + (χ12 + χ32)(χ21 + χ23)

∗ (2, 0), (2, 2), (3, 1), (3, 3)}
Z8(2) = (χ00 + χ02)(χ00 + χ20)

∗ + (χ01 + χ03)(χ10 + χ30)
∗ 2 {(0, 0), (0, 2), (1, 1), (1, 3),

+ (χ20 + χ22)(χ02 + χ22)
∗ + (χ21 + χ23)(χ12 + χ32)

∗ (2, 0), (2, 2), (3, 1), (3, 3)}

we numerically compute the modular invariants for which we use a computer program and
[3, (1.6)] which says that in any modular data Zλµ � dim(λ) dim(µ) thus in our simple currents
cases Zλµ ∈ {0, 1}. The number of modular invariants are as in table 1. For completeness,
we write all the modular invariants together with their traces and the canonical endomorphism
θH that produces every modular invariant (see tables 2–5). In order to save space, instead
of using the matrix Z = [Zij,ab] we use the partition function notation Z = ∑

Zij,abχijχ
∗
ab,

where χ ’s here are regarded as symbols. For K < G we denote by �(K) = {(k, k) : k ∈ K}
the diagonal copy of K in G × G.

For the level 1 model, we have two modular invariants, see the RHS of table 2. Note that
in this case H = {(0, 0), (0, 2)} gives rise to a canonical endomorphism θH by [13, lemma
3.8] since T 2

02,02 = 1. This θH produces the modular invariant Z2 as the trace of the modular
invariant associated with θH has to be 2 by (7). Also remark that the system NXN is isomorphic
to Z2 × Z2, as a group. Nevertheless, the subgroup K = {(0, 0), (2, 0))} does not give rise to
a canonical endomorphism θK , again by [13, lemma 3.8] since in this case T 2

02,02 �= 1 (neither
is the full group Z2 × Z2).
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Table 5. Quantum Z4 modular invariants: levels 1, 2 and 3.

Modular invariant Trace θH

Levels 1 and 3
Z1 = ∑

χij χ
∗
ij 16 0 × 0

Z2 = ∑
χ0iχ

∗
0−i +

∑
i �=0 χij χ

∗
−i,−j−2 4 Z2 × Z2

Z3 = ∑
χ0iχ

∗
0j 4 0 × Z4

Z4 = |χ00 + χ02|2 + |χ01 + χ03|2 8 0 × Z2

+ |χ20 + χ22|2 + |χ21 + χ23|2

Level 2
Z1 = ∑

χij χ
∗
ij 16 0 × 0

Z2 = ∑
χij χ

∗
−i−j 4 Z2 × Z2

Z3 = ∑
i+j even χij χ

∗
ij +

∑
2i+j odd χij χ

∗
i+2,j 8 Z2 × 0

Z4 = ∑
j even χij χ

∗
ij +

∑
2i+j odd χij χ

∗
i+2,j+2 8 �(Z2)

Z5 = ∑
χ0iχ

∗
0j 4 0 × Z4

Z6 = |χ00 + χ02|2 + |χ20 + χ22|2 4 Z2 × Z2

(χ01 + χ03)(χ11 + χ13)
∗ + (χ11 + χ12)(χ01 + χ03)

∗

Z7 = |χ00 + χ02|2 + |χ21 + χ23|2 4 {(0, 0), (0, 2), (2, 1), (2, 3)}
(χ00 + χ02)(χ21 + χ22)

∗ + (χ21 + χ22)(χ00 + χ02)
∗

Z8 = |χ00 + χ02|2 + |χ01 + χ03|2 8 0 × Z2

+ |χ20 + χ22|2 + |χ21 + χ23|2
Z57 = ∑

χ0i (χ00 + χ02 + χ20 + χ22)
∗ 2 Z2 × Z4

Z75 = ∑
(χ00 + χ02 + χ20 + χ22)χ

∗
0i 2 Z2 × Z4

The levels 0, 1 and 2 of the quantum Z3 double were studied in [13, section 5.1] where
it was also noted that the level 1 data coincide with the WZW SU (9) level 1 data. Thanks
to proposition 2.1 we now know that the modular data for the level 2 have to be the complex
conjugation to the modular data of the level 1 (with relabelling of the simple currents). Note
that for the levels k = 1 and k = 2 we have GCD(2k, n) = 1, thus in both cases the fusion
rules of the system NXN is Z9, see (12).

Theorem 3.1. All the modular invariants of the quantum Z4 double models at every level are
realized by subfactors.

Proof. By [29] we know that all the 22 level 0 quantum Z4 modular invariants are realized by
subfactors, see table 4.

Now we study the level 1 data. There are precisely four modular invariants, see table 5.
The system NXN has the structure of the group Z2 × Z8, as GCD(4, 2) = 2, see (12). Let us
consider the following list of subgroups of Z2 × Z4:

H2 = {(0, 0), (0, 2), (2, 0), (2, 2)}, H3 = 0 × Z4, H4 = {(0, 0), (0, 2)}.
Note that by the fusion rules, see (12) with k = 1 and n = 4, the group H2 is isomorphic
to Z4 with (2, 0) being a generator and H4 a copy of Z2. Since T 4

20,20 = 1 = T 4
01,01, in [17]

it is implied that θH2 and θH3 are canonical endomorphisms. Hence θH4 is also a canonical
endomorphism since H4 is a subgroup of H2.

On the other hand, the RHS of (7) for the modular invariants Z2, Z3 and Z4 is 4[θH2 ], 4[θH3 ]
and 8[θH4 ], respectively. Therefore, H2,H3 and H4 produce the modular invariants Z2, Z3

and Z4, respectively. Thanks to proposition 2.1, level 3 model reduces to that of level 1.
Finally, we study the level 2 model. There are ten modular invariants as written in table 5.

The system NXN has the structure of the group Z4 × Z4, as GCD(4, 4) = 4. Let us consider
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the following list of subgroups of Z4 × Z4:

H3 = {(0, 0), (2, 0)}, H4 = {(0, 0), (2, 2)}, H5 = 0 × Z4,

H7 = {(0, 0), (0, 2), (2, 1), (2, 2)}, H8 = {(0, 0), (0, 2)}.
Since (21) is a generator of H7, a copy of Z4, and T 4

21,21 = 1 we conclude that θH7 is a canonical
endomorphism (similarly with H5). The others are subgroups of H5 or H7, hence θH3 , θH4 and
θH8 are canonical endomorphisms. By computing the RHS of (7) for all the modular invariants
we conclude that every canonical endomorphism θH3 , θH4 , θH5 , θH7 and θH8 appears only for
Z3, Z4, Z5, Z7 and Z8. Therefore, θHi

produces Zi , with i = 3, 4, 5, 7, 8. Since we have
Z3Z4 = Z2, Z3Z8 = Z6 and Z3Z5 = Z75 we conclude that the other modular invariants are
also sufferable (using [13, theorem 3.6]). �
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[3] Böckenhauer J and Evans D E 2001 Modular invariants and subfactors Mathematical Physics in Mathematics
and Physics (Siena, 2000) (Providence, RI: American Mathematical Society) Fields Inst. Commun. 30 11–37
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